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Abstract

Deep hashing models have achieved great success in retrieval tasks due to their

powerful representation and strong information compression capabilities. How-

ever, they inherit the vulnerability of deep neural networks to adversarial pertur-

bations. Attackers can severely impact the retrieval capability of hashing models

by adding subtle, carefully crafted adversarial perturbations to benign images,

transforming them into adversarial images. Most existing adversarial attacks tar-

get image classification models, with few focusing on retrieval models. We pro-

pose HUANG, the first targeted adversarial attack algorithm to leverage a diffu-

sion model for hashing retrieval in black-box scenarios. In our approach, adver-

sarial denoising uses adversarial perturbations and residual image to guide the

shift from benign to adversarial distribution. Extensive experiments demonstrate

the superiority of HUANG across different datasets, achieving state-of-the-art

performance in black-box targeted attacks. Additionally, the dynamic interplay

between denoising and adding adversarial perturbations in adversarial denoising

endows HUANG with exceptional robustness and transferability.

Motivation

In our article published at ICASSP2025 (EmbSTar), the adversarial generation

process exhibits instability and struggles to converge.

Adversarial attacks can be conceptualized as adding noise to benign images,

while diffusion models are known for their strong capability in handling noise.

Therefore, we aim to modify the sampling distribution during the denoising

process of the diffusion model to progressively shift the image distribution

towards the adversarial distribution.

Methodology
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Figure 1. HUANG’s structure: Target Fusion extracts target semantics, and Target Adaptation

reconstructs the label and generates a prototype code. Adversarial generation adds noise to a

benign image, followed by adversarial denoising to shift the image distribution from benign to

adversarial, producing the final adversarial image.

Theory derivation

When using a pretrained diffusion model to generate images, the reverse pro-

cess that transforms noise into an image is typically employed. In each step,

the image xt−1 is sampled fromN (µθ, Σθ). Generally, the image obtained from
the reverse process will have similar semantics to the benign image. However,

by incorporating adversarial denoising into this process, the benign distribution

is gradually shifted towards the adversarial distribution, resulting in an adver-

sarial image. To achieve this, we modify the reverse process of pθ (xt−1 | xt) to
a conditional distribution:

pθ (xt−1 | xt, xtar) = C1pθ (xt−1 | xt) pθ (xtar | xt−1)

Dhariwal has demonstrated that a Gaussian distribution with a shifted mean

can be used to approximate the distribution. We approximate the distribution

using the following equation:

pθ (xt−1 | xt) pθ (xtar | xt−1) = N (µ + Σ∇xt log pθ (xtar | xt) , Σ)

So ifwe know pθ (xtar | xt), we can direct the sampling distribution from benign
to adversarial gradually.

Adversarial perturbation

We use an empirical measurement to describe pθ (xtar | xt):
pθ (xtar | xt) = C2 exp (sDadv (xtar, xt))

Dadv (xtar, xt) = − 1
K

H (xtar)T H (xt) + 1

where pθ (xtar | xt) can be seen as the probability that xt−1 will be recovered
to an adversarial image, and Dadv (xtar, xt) measures the hamming distance
between xt and the target image.

The same operation can be done on the target semantic fs:

pθ (fs | xt) = C3 exp (sDsim (fs, xt))

Dsim (fs, xt) = fs · T F (xt, ytar)
‖fs‖ ‖T F (xt, ytar)‖

Residual image

Relying solely on adversarial perturbations may cause excessive deviations,

producing visually distinct images. To mitigate this, we supervise the shift us-

ing the residual image r = xt − xben, aligning the mean closer to the benign

distribution for more visually similar outputs. Denote g = ∇xtDadv (xtar, xt) +
∇xtDsim (fs, xt), xt−1 is then sampled from this adjusted distribution.

N (µ + sΣg −
√

Σr, Σ)
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Quantitative results

Table 1 shows that HUANG outperforms existing methods across datasets and

hash bit lengths, achieving over 10% higher t-MAP on DPSH, HashNet, and CSQ

compared to previous SOTA. HUANG’s strong performance, especially on smaller

datasets, highlights its ability to capture fine-grained semantics and enhance ro-

bustness and transferability.

Model Method
FLICKR-25K NUS-WIDE MS-COCO

16bits 32bits 48bits 64bits 16bits 32bits 48bits 64bits 16bits 32bits 48bits 64bits

DPSH

Original 55.52 55.91 56.06 54.76 46.32 46.39 46.47 47.62 34.81 35.61 38.47 40.52

DHTA 56.69 57.21 59.41 56.36 46.68 48.42 48.76 48.89 36.04 39.49 42.76 44.17

ProS-GAN 26.93 58.17 60.26 57.62 46.81 48.87 49.13 49.25 38.14 42.62 43.59 45.92

THA 59.14 59.01 60.88 62.76 49.01 49.13 49.41 49.15 37.80 40.96 43.01 44.85

PTA 61.07 62.55 60.94 60.85 46.02 46.16 46.35 46.24 39.88 43.05 46.47 48.73

SAAT 62.43 63.07 65.55 60.02 49.82 51.28 51.63 51.72 41.82 45.68 48.34 50.61

HUANG 71.64 78.15 73.66 71.32 61.74 63.49 66.50 68.08 52.31 55.90 57.85 61.41

HashNet

Original 43.37 47.02 48.90 48.16 30.47 33.85 35.28 37.76 21.94 24.55 24.63 26.85

DHTA 49.23 50.99 51.14 51.69 31.23 36.25 39.83 41.29 26.62 28.33 29.47 31.88

ProS-GAN 50.16 51.10 52.82 53.13 35.29 37.06 40.95 43.48 28.42 30.84 33.36 34.80

THA 47.01 47.61 48.21 48.58 36.62 38.39 42.32 44.91 30.65 31.33 33.91 35.26

PTA 57.26 59.13 60.45 60.98 38.95 41.36 44.61 46.04 32.89 34.26 36.75 37.49

SAAT 54.92 56.36 58.64 59.38 43.82 46.20 49.52 50.38 35.11 37.15 38.79 40.61

HUANG 64.18 68.67 64.67 66.63 52.44 56.11 58.69 61.53 43.82 45.91 47.16 49.77

CSQ

Original 51.02 52.16 51.32 50.78 39.11 41.48 39.45 38.07 28.20 30.43 31.17 31.79

DHTA 53.59 56.49 54.57 53.08 41.22 44.23 42.67 40.31 31.42 34.35 33.65 32.88

ProS-GAN 56.74 57.99 58.74 60.39 43.01 45.19 43.92 41.15 34.89 36.71 35.61 34.21

THA 56.79 60.19 59.40 57.88 44.65 47.77 46.86 44.54 35.95 37.71 35.08 32.51

PTA 57.43 59.81 60.41 58.37 43.59 46.86 47.33 47.88 37.66 38.65 39.44 40.36

SAAT 59.21 61.42 60.78 59.67 46.49 48.95 49.37 49.59 40.47 41.63 43.28 44.62

HUANG 70.15 73.56 72.94 71.65 57.24 59.87 60.77 62.43 47.83 49.36 51.89 53.67

Table 1. The targeted attack performance comparison between HUANG and other advanced

attack methods. The evaluation metric is t-MAP.

Qualitative results
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Figure 2.We evaluated HUANG’s robustness against three defense methods: JPEG compression,

feature squeezing, and randomized smoothing. HUANG outperforms prior methods, maintaining

high t-MAP with minimal impact from defenses, thanks to its dynamic interplay of adding adver-

sarial perturbations and denoising.
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Figure 3. Experiments using SSIM show that as T increases, image quality decreases due to
higher noise and denoising complexity. Smaller T weakens adversarial transferability, while
excessively large T reduces adversarial effectiveness.
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